Pretty on the outside and ugly on the inside prototype

So I’ve been busy doing a bunch of computer maintenance and looking into other things I’ve neglected while building the roaster so it’s been a bit slow.  I decided I wanted to start gluing corners together and drilling some holes to see how the case goes together so I can eventually get back to fixing the issues with the roast controller case.  Over the past several weeks I soldered together all of the boards, made wiring harnesses and figured out a bunch of “oops” moves I had made designing things when I got rushed for time.

Turns out I was not able to get stand offs locally in the sizes I had wanted so the heights are all screwed up where I placed holes on the outside surfaces.  I also forgot to specifically allocate power for the exhaust fan in the original design BUT I did have “Spare” pins allocated. The fan I ordered also was not the right size for the hole template I had used (Inside fan dimension vs outside screw / case dimension)… neither of them were actually labeled right the way every other fan I have is sized.

So with everything screwed or harnessed in place this is what I have for the Arduino…

The Arduino wired for Coffee Roaster control

It is a MEGA2560 mounted on a Crib for Arduino.  On top is an Ethernet Shield w/ microSD slot.  Then I used a variety of crimped headers to connect to some of the pins on the MEGA and on the ethernet shield.  I have twenty five lines in the bundle going to the Arduino.  I had some spare 10 strand cables from a project at Halloween and no 25 strand cables to use so I used one of those cable wraps to keep the all together after connecting DB25 to one end and header pins to the other.  Once the lid for the crib for Arduino is in place it then connects to the back of the enclosure.

Wiring Harness connecting to the back of the controller enclosure

As you may notice the sockets I was using for connecting the power out are the type that snap in.  The majority of these will not snap into most laser cut plastic sheets and instead are designed for aluminum cases.  The plug to the right on the other hand screws in.  These work great with a variety of thicker locations.  The fan was originally going to be on the inside with a wire cover on the outside but with the wrong size fan hole in use I had the wrong cover to fit the fans that I had that would fit the hole.

For the DB25 connectors it turned out good that I had decided to use a cut out pattern  that had the holes on the side for the anchoring hex nuts rather than just having them cut out so that I could mount them to the socket and anchor the connector.  Since the stand offs were too short they don’t allow me to anchor the PCBs to the bottom plate.  Instead I had to screw them to the back plate using normal screws and with the burnt circles on the laser cut work I had to use some washers too to keep it sturdy.  This is what the back plate looks like.

Rear Panel of controller

This panel includes – One non-filtered switched 15Amp Power Entry module, 2 snap in 15 amp convenience plugs, 1 5VDC fan, 2 DB-25.  The left one is the main guts for the LCD, TRIAC control, potentiometers, thermocouple, and a variety of other sensors.  The right includes all the non-essential stuff for backlighting all the buttons on the button pad and a few other things including spare wiring.  You cna see just a screw on the right since it was relatively intact and so it won’t block the DB25 plug being used.  The right DB25 has washers and screws in place.  These are primarily used to attached the PCB in place attached to the back side.

Next up is the inside view of the electronics area:

Rear View of the Back Panel

Rear view of the back panel.  I need to shrink up the crimp connectors around the wire  (they shrink like heat shrink tubing but is actually much firmer).  Also the connector on the right side (the switched power entry module) should have the screws more securely fastened with nuts and washers but this is mainly just a test to ensure it all fits together and then allow me to focus on some programming for a while to see if I can get more working and develop menus etc.  The clear acrylic bar is used to anchor the corners better.  I need to change the locations of the screws since I could not find screws the size I wanted without spending way too much for large quantities of them on the internet and having them shipped to me etc.  The thermocouple board on the right had the same issue with the stand offs so it is just floating loose in there right now.  I need to find somewhere to get the Omron thermocouple sockets where I dont need to order them by the 1000s since it looks like Ryan McLaughlin has stopped selling things on his site when they (used to) have problems getting the newer MAXIM thermocouple chip.  They’re all over the place now but he hasn’t restarted his store up so I don’t know the deal there.

Here is the view down into the enclosure from above:

Top view into enclosure

With the cover on:

Front panel installed on enclosure

Front panel running

Front Panel Running

When I send it back out again for a new case I hope to have a different board to install that will be switching the smaller breakout boards being designed onto the circuit board as well as add a power supply and possibly having an arduino board mated on top of the circuit board perhaps to bring more of the electronics inside.  I might want to try to get a Digilent board perhaps to try converting to it as a transition between Arduino and PIC32 before I completely switch to a dedicated PIC32.

I’ve also been looking at possibly creating a dedicated PC application to communicate with it directly via USB and over ethernet.  I am toying around with the “QT/QML” language but havent gotten too far with it.  I may just go back to Processing though.

First order of circuit boards from OSHPark.com

If you were following comments in one of the previous blog posts I just received my first order of circuit boards from OSHPark.com. This order included version 1 of my button board and a preliminary interface board to connect a variety of sensors and some of my other boards to an Arduino Mega 2560.

I got to experience the “joy” of being one of the initial test subjects for the brand spanking new OSHPark.com site. It actually worked pretty well and was rather impressive in terms of the graphical response you got from it. It would evaluate the files you uploaded and convert them into a graphical rendering of the finished product. When I ran my boards through the system I did notice that the silkscreen appeared to be NOT the rear/bottom view as the site described but instead it was the “Superman X Ray Vision” view. If you’ve used Eagle and a few other competing PCB CAD programs this is what you normally see when working on your board. Your test will be “reversed” or “mirrored” and the holes will be in the positions they would be in from above. It is thus like you are looking through the layers from above. I mentioned this oddity in my comments on the job but don’t know if they’ve resolved it yet by changing the code or changing the description.

The timeline for my order is as follows:

  • May 21st – Placed Order (T=0)
  • May 25th – Tweet @laen replied by @OSHPark reported that the system is not sending notices yet. Indicates board have been reviewed and panelized. (T+4)
  • May 29th – Received official email that said boards on panel for May 31st.  Notice website reports May 30th as panel date. (T+8)
  • June 7th – Received notice saying boards sent to the fabricator. Probably just an update to the software of the site and the boards were sent prior to this point. (T+17)
  • June 8th – Received notice saying boards received from the fabricator awaiting de-panelization. (T+18)
  • June 15th – Boards apparently processed for postage based on postmark. (T+25)
  • June 18th – Received boards. (T+28)

As mentioned I expect most of the dates to be unreliable other than the fact that it took 28 days start to finish.  The site still has not changed from a status saying my boards are waiting to be de-panelized and nothing about being shipped.  Obviously it is a work in progress.

Here is the collection of boards received

First order from OSHPark.com. My Button Pad board and the preliminary interface board to connect a variety of sensors to the external Arduino mega.

The spacing seems to be exactly what the CAD said it would be and the holes drilled seem to be very accurate and centered like they should be including some of the very small vias.  I will need to crack off and dremel/sand off the rough spots from the edges where the boards were connected together.

More pics:

Interface board

Button Pad 1.0 with several buttons placed

Button Pad v1.0

Button Pad 1.0 Top

Button Pad 1.0 Rear

At this time I am waiting for 330 ohm 0603 resistors to arrive.  They were on back order and should arrive in a few more weeks.  Once they arrive I need to use my infrared preheater to heat up the boards and then do a quick solder on each of the resistors before connecting all the various through hole parts.  Once that happens I’ll update with a new photo showing the finished boards.

Ordered more stuff – headaches and new replacement stuff

I had a “Chromalyte” LCD screen that came from EIO.  I needed some sort of cable for another thing going on at home and EIO came up having it in some google search.  It was cheap and the price for a similar cable from darn near anywhere else on the planet was about 5 times higher plus obscene shipping on top of that for something that ultimately ends up in a padded envelope and has $2 of postage on it.  Anyway this LCD was supposed to do 20 characters by 4 lines.  Currently I’ve been using a 20 by 2 lines LCD by Newhaven.  The Newhaven works great.  The Chromalyte?  Not so much.

I googled Chromalyte looking for a data sheet and figuring there may be some info somewhere on the internet about it and maybe using it on an Arduino project or something like that.  I noticed I kept finding pages for EIO.  I looked the product over and kept trying to find some sort of marking on it.  I looked at the data sheet found on EIO and it was pretty basic.

It mentioned using some sort of software available for download from Chromalyte’s website to test it from your Windows PC.  I figured maybe I could try that and tried harder looking for some sort of Chromalyte website.  I threw Incorporated into the search and still kept coming up with EIO.  I really started to wonder at this point and went to Archive.org looking for historical websites that were named Chromalyte.  What I discovered?  EVEN YEARS AGO Chromalyte dot com pointed to EIO’s sales pages.  Today?  It’s current contents?  It’s a GoDaddy “is this your website” listing.  But with the history seeming to always be EIO they don’t even seem to be a real company and are instead just a propped up brand name for EIO.

What made me look into Chromalyte so much that I was having problems with?  Newhaven LCD I can serial.print and serial.write decimal or hex codes to it all day long…. move the cursor around on the screen, clear the screen, put text anywhere etc.  Chromalyte? I print serial to it and nothing happens.  I throw in slash n and r to see if that helps and it doesn’t.  I try sending hex codes for all sorts of thing and nothing.  If I serial.write a clear screen it wipes the screen.  If I serial write movement commands and turn on the cursor I can watch the cursor dance around all over the screen.  I print more serial to it and nothing happens.  I serial.println to it? I get a white box IN FRONT OF the text and the line that I want anywhere I tell it to move the cursor to.

Is there anything about this in the data sheet?  Nope.  Anyone used one on an Arduino?  Not that I can find…. Heck if it wasn’t for EIO listings all over the place I don’t think anything comes back about Chromalyte at all.  I’d have to format some search keywords to force it to drop out EIO responses just to see if I could find anything else because when I searched for that name every entry for pages and pages came back as EIO.

The codes it uses are really bizarre compared to most other LCD brands available.  I think I found someone’s code ONCE that actually used a similar command structure for clearing the screen and moving the cursor but all of the other codes were different.  I’m not a stranger to writing to serial driven LCD as well as using parallel, SPI, and I2C to write to text and graphic LCDs.  This thing is just plain weird.

Sure I could probably email EIO and bitch about it but if this thing is this weird it’s just not worth it to me.  It was cheap enough compared to the hundreds and hundreds of dollars I’ve spent on all the other hardware to build a coffee roaster that it’s but a blip.  I just don’t see myself buying another one, ever.

If anyone out there can send me an Arduino program that DOES indeed work on a Chromalyte labeled as a c420a that simply clears the screen, writes Line 1 to line 1, Line 2 to line 2 and so on I’ll be amazed.  If such a thing does occur I’ll permanently install the screen in a project I’ll be doing later to read a flow meter and open/close a water valve on my reverse osmosis water system so that I can punch up a 1/2/5 gallon fill without needing to watch it.  I’m hoping to have it monitor my total water into the system and the output into a bottle and then monitor TDS sensors to gauge water purity.  Then have it alert me to change the filters and keep track of water input purity throughout the year.

To my girlfriend:  Yes I am too lazy to set a timer to track how long I’ve been adding water to a water bottle.  Instead I will design a circuit, solder up a board, write software for a microcontroller, and then mount the thing in a case so that I don’t have to set a timer so I don’t overflow the water bottle.  I know my limitations.  Building a system to turn the water off by itself is FAR easier for me to do.

So anyway today arrived a Newhaven NHD-0420D3Z-NSW-BBW as well as a pair of PCB solderable DB25 connectors, a bag of 100 B3F-1000 type Omron buttons and a few Maxim MAX31855 thermocouple ADC chips.  I figure I’ll make a board up that does 4 inputs at some point so I got enough to do that plus a couple spares.  I still need the sockets though.  Nobody seems to sell those except for Ryan McLaughlin.  After the MAX31855 that he switched to from the MAX6675 became scarce he shut down his store.  Hopefully he will pop back up sometime soon since his boards were really well made and I think he’d be a great resource for DIY’ers building smoker controllers and coffee roasters and other such things.

Anyway this weekend I will be doing my taxes and then spending the rest of time soldering pins to the Newhaven display and connecting it to the roaster controller.  This past two weeks I converted the entire roaster program over to Arduino 1.0 and updated all of the Libraries that I was using to the latest versions.  I few I had to modify slightly due to them not being 1.0 updated but the majority of them were available on the internet updated already.

The conversion to 1.0 made me make a note of all of the libraries I had used and begin to create a list.  If you look at the menu bar you will see “Resources” up top.  This allows you to pick an Arduino link and then get links that go to sites to download the current libraries if you are looking to build your own project.  I’ll be adding a few more projects and libraries that seem useful to DIY Coffee Roasters (and controllers) over the coming weeks too.